If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+38x+49=0
a = 1; b = 38; c = +49;
Δ = b2-4ac
Δ = 382-4·1·49
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-4\sqrt{78}}{2*1}=\frac{-38-4\sqrt{78}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+4\sqrt{78}}{2*1}=\frac{-38+4\sqrt{78}}{2} $
| 5b+4=7(b+1) | | 42-(2c+3)=2c+14+c | | -6(1+4x)=-198 | | 10.2=9.4k | | 6m+6=-12 | | 22+2x=-64 | | -18=36-l | | 4=-2x-6+6 | | 6c÷7=7c÷22 | | (3x/4)-2=5x | | 12=b/4+2 | | -2(x+3)+2=12 | | -1.08-5.8n=-5.7n-1.4 | | 0.6(2d-5)=4(7-0.2d) | | X-2x+4x+2=37 | | -10+3x=x-6 | | 7(4+4k)=-14+7k | | 7(2+2x)=-14 | | O.25r-0.25+0.25r=0.5-0.25r | | 42-(2c+3)=2(c+7)=c | | Q=10-3p | | 4x-4+6x-1+8x-13=180 | | 125m-75m+48,250=51,000-200m | | 2(x-7)-6x=10 | | (3s+5)(5s+8)=0 | | 23=x/2+4 | | 4x-4+6x-1+8x-13=18 | | 5y^2+33y+18=0 | | 11x-2=-20 | | (3x+3)^(5/4)=32 | | -18=14r | | 2x+5=2(4x+x) |